C-METHYL PHENOLICS FROM QUALEA SPECIES*

DIRCEU DE B. CORRÊA,† LOURDES F. B. GUERRA,† OTTO R. GOTTLIEB‡ and J. GUILHERME S. MAIA§

† Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, 30000 Belo Horizonte, MG, Brazil; ‡ Instituto de Quimica, Universidade de São Paulo, 05508 São Paulo, SP, Brazil; \$ Instituto Nacional de Pesquisas da Amazônia, Conselho Nacional de Desenvolvimento Científico e Tecnológico, 69000 Manaus, AM, Brazil

(Received 28 April 1980)

Key Word Index—Qualea labouriauana; Q. paraensis; Vochysiaceae; C-methylflavanones; C-methylbenzophenone.

Abstract—The trunk wood of *Qualea labouriauana* contains, besides (2R)-5,7,4'-trihydroxy-3'-methoxy-6,8-dimethylflavanone, (2R)-5,7,4'-trihydroxy-8-methylflavanone, the biosynthetically interesting 2,2'-dihydroxy-4,6,4',6'-tetramethoxy-3,3'-dimethylbenzophenone. From the trunk wood extract of *Q. paraensis* the first named flavanone crystallized out directly.

INTRODUCTION

Previous publications report the presence of ellagic acid and five derivatives and of 7,3',4'-trihydroxyflavone and three derivatives respectively in the wood of Erisma calcaratum (Link) Warm., Salvertia convallariodora St. Hil., Vochysia acuminata Bongard, V. tyrsoidea Pohl. [1] and in the leaves of S. convallariodora, V. cinnamomea Pohl., V. tucanorum Mart. [2]. The present communication reports the presence of the C-methylated flavanones 1a, 2a, 3a and benzophenone 4a in the wood of Qualea labouriauana Paula [3]. (2R)-5,7,4'-Trihydroxy-3'-methoxy-6,8-dimethylflavanone (1a) was also isolated from Q. paraensis Ducke [4], a further South American species of the Vochysiaceae.

RESULTS

Compounds 1a and 2a are (2R)-flavanones as shown by ORD curves [5] and the typical NMR signals for the protons at C-2 and C-3 [6]. Due to the slight solubility of 1a in the usual deuterated solvents the NMR spectral analysis referred to dimethyl (1b), diethyl (1d) and dibenzyl (1e) ethers, as well as to di-(1f) and tri-(1g) acetates. Interpretation of all signals led to the formula $C_{15}H_6O_2(OH)_3OMe$. Me₂ for the natural compound. The presence of hydroxyls at C-5 and C-7 was ascertained by UV shifts, respectively with AlCl, and NaOAc. The action of AlCl₃ is not instantaneous, a fact which, together with the inertness towards etherification and even acetylation, indicates the steric hindrance of the 5hydroxyl by the methyl group at C-6. The other methyl is located at C-8 since the three aromatic protons, forming an ABX-system, must all be located on ring B. The 270 MHz spectrum shows the X-part, at the low field end of the signal (τ 2.76 for 1b), as a doublet (J = 3 Hz) which apears in the triacetate (1g) at slightly higher field ($\Delta \tau + 0.08$ ppm). The AB-part (τ ca 3.15 for 1b) is resolved in 1g into a doublet ($\Delta \tau - 0.20$, J = 8 Hz) and a double doublet ($\Delta \tau - 0.06$, J = 8, 3 Hz). These facts indicate that all protons are ortho or para related with only one oxyfunction and that it is the proton which is coupled only to an ortho-proton which is vicinal to the OH group in 1a. The usual 4'-hydroxy-3'-methoxy B ring pattern thus prevails in the compound.

The ¹H NMR spectra of **2a**, C₁₅H₈O₂(OH)₃Me, and of poriol (**2b**) [7, 8], though not identical, are very similar. The mps, however, are quite distinct: **2a** 195–200°, **2b** 265–270° [7]. Since both products show identical ORD curves (for **2b** see [9]), they can differ only by the location of the A ring methyl.

Compound 3a is a (2S, 3S)-dihydroflavonol, as shown by an ORD curve [5] and the typical NMR signals for the protons at C-2 and C-3[6]. The 4'-hydroxy pattern for ring B is evidenced by the AA'BB' signals shifted to substantially lower field upon acetylation to 3b. The reaction gives also evidence for the hydroxyl at C-3 $\Delta \tau$ -0.72 ppm (H-2), -1.33 ppm (H-3)]. Indeed, the UV AlCl₃ shift is reversed upon addition of HCl, a fact which is inconsistent with the existence of a hydroxyl at C-5. The IR carbonyl maximum at 1675 cm⁻¹ is also compatible with 3-hydroxy-5-methoxyflavanone [10]. absorption Dihydroxyflavanones show that 1620-1640 cm⁻¹ [10, 11]. The remaining hydroxyl must be located at C-7 (UV NaOAc shift). This leaves only C-6 or C-8 for the methyl, the former location being preferred tentatively on account of the neatness of the aromatic singlet (τ 3.83). The methoxyl protons would be expected to cause broadening of the H-6 signal [12].

The molecular formula of 4a, $C_{19}H_{22}O_7$, determined by HRMS, was expanded to $C_{12}H_2(OH)_2$ - $(OMe)_4Me_2CO$ after inspection of the ¹H NMR spectrum which shows only five singlets at τ 2.1 (OH), 3.9 (ArH), 6.0 (ArOMe), 6.2 (ArOMe) and 7.98 (ArMe). The compound must thus possess a symmetrical benzophenone structure, a fact which is consistent with its UV spectrum [13]. The aromatic proton singlet at

^{*}Part II in the series "The Chemistry of Brazilian Vochysiaceae". For Part I see ref. [1]. Based on part of the M.S. thesis submitted by L.F.B.G. to Universidade Federal de Minas Gerais (1979).

$$R^2O$$
 OR^3
 OMe
 R^2O
 R^1

$$R^1 = R^2 = R^3 = H$$

1b
$$R^1 = H, R^2 = R^3 = Me$$

1c
$$R^1 = R^3 = H, R^2 = Et$$

Id
$$R^1 = H$$
, $R^2 = R^3 = Et$

1e
$$R^1 = H$$
, $R^2 = R^3 = CH_2Ph$

If
$$R^1 = H, R^2 = R^3 = Ac$$

$$1g R^1 = R^2 = R^3 = Ac$$

$$R^2O$$
 R^3
 OH
 OH

$$2a R^1 = R^2 = H, R^3 = Me$$

2b
$$R^1 = Me, R^2 = R^2 = H$$

$$2c R^1 = H, R^2 = R^3 = Me$$

2d
$$R^1 = R^2 = Me, R^3 = H$$

relatively high field points to the existence of phloroglucinol patterns. The hydroxyls are both chelated (UV/AlCl₃ shift) and highly hindered, acetylation of the compound leading only to a diacetate (**4b**) and in low yield. The sole structure **4a** which is compatible with these data is corroborated by the ¹H NMR spectrum of this acetate which shows singlets at τ 3.58 and 3.65 (2 ArH), 6.2 (4 ArOMe), 7.72 and 7.82 (2 ArOAc), 8.16 and 8.17 (2 ArMe). Chelation having ceased, repulsion of the acetoxyl groups causes the asymmetry of the rings with respect to the carbonyl which is now observed.

DISCUSSION

The unifying feature of the compounds from these *Qualea* species is the substitution of the acetate derived phloroglucinol units by *C*-methyls. Specially interesting is the benzophenone in which two such units are joined by a carbonyl group. This group, however, may also have originated from a *C*-methyl, formation of the compound involving oxidative coupling of dimethylated and monomethylated phloroglucinol analogues.

EXPERIMENTAL

Isolation of the constituents from Qualea labouriauana. Plant material was collected in the vicinity of Parintins, Amazonas State, and identified by Dr. José Elias de Paula (voucher IAN, Belém, 99910). Ground trunk wood was extracted successively with C_6H_6 and EtOH. The C_6H_6 extract (10 g) was separated by Si gel (500 g) column chromatography into 3 useful fractions eluted with C_6H_6 -CHCl₃-MeOH of respective proportions 7:3:0, 1:1:0 and 0:97:3. The 1st fraction gave, by rechromatography and crystallization from EtOH. 4a (10 mg). The 2nd fraction gave, by washing with MeOH and recrystallization from MeOH, sitosterol (900 mg). The 3rd fraction gave, by rechromatography (Sephadex LH-20, MeOH), 1a (250 mg). The

EtOH extract (160 g) was adsorbed on Si gel (500 g). Washing with CHCl₃-MeOH 7:3 gave a product (100 g) which was separated by Si gel (800 g) column chromatography into 2 useful fractions eluted with CHCl₃-MeOH of respective proportions 99:1 and 9:1. The 1st fraction gave, by washing with Et₂O, 1a (150 mg). The 2nd fraction gave, by washing with Et₂O and purification by TLC, 3a (30 mg). All residual material stemming from the EtOH extract was united and extracted with AcOEt. The extract (90 g) was separated by Si gel (600 g) column chromatography into one useful fraction eluted with CHCl₃-MeOH 98:2. This gave, by repeated TLC, 2a (50 mg).

Isolation of the constituents from Qualea paraensis. Plant material was collected and identified by Dr. José Elias de Paula. Ground trunk wood (7.3 kg) was extracted with C_6H_6 . The solution deposited, upon conen and cooling, crystals of Ia (2 g) which were separated by filtration.

(2R)-5,7,2'-Trihydroxy-4'-methoxy-6,8-dimethylflavanone (1a). Mp 218-220° (M Found: 330.1091; C₁₈H₁₈O₆ Requires: 330.1103). v_{max}^{KBr} cm $^{-1}$: 3390, 3200, 1635, 1600, 1510. λ_{max}^{I+tOH} nm: 330, 350 (ϵ 9750, 2000); $\lambda_{\text{max}}^{\text{EIOH + NaOAc}}$ nm: 234 inf., 258, 300 inf., 345 $(\epsilon 4600, 1650, 3800, 12400); z_{\text{max}}^{\text{EiOH} + \text{NaOH}} \text{nm}: 228, 243, 343 (\epsilon 9100,$ 6950, 15350); $\lambda_{\text{max}}^{\text{EtOH} + \text{AICL}}$ nm (after 15 min): 303, 365 (\$16500, 4950). MS (*m/e*): 330 (42 %) M⁺, 312 (100), 207 (5), 181 (63), 180 (8), 152 (27), 150 (22), 149 (12), 135 (23), 124 (11). Dimethyl ether (**1b**), mp 138–140 (EtOH), v_{max}^{KBr} 3420, 1635, 1590, 1500, λ_{max}^{EtOH} nm: 288, 365 (\$\epsilon\$ (\$\epsilon\$12900, 2700); $\lambda_{max}^{EtOH+NaOH}$ nm: 292 (\$\epsilon\$9850); $\lambda_{\text{max}}^{\text{FioH} + \text{AICI}}$ nm: 296 (ϵ 9400). ¹H NMR (CDCl₃, 270 MHz): $\tau = 2.06$ (s, OH-5), 2.76 (d, $J \sim 3$ Hz, H-2'), ~ 3.1 (m, H-5', H-6'), 4.41 (dd, J = 12, 3 Hz, H-2), 7.04 (dd, J = 16, 3 Hz, H-3 eq), 7.15 (dd, J = 16, 12 Hz, H-3 ax), 7.89, 7.90 (2 s, 2 OAc). MS (m/e): 358(100 %) M⁺, 195 (8), 194 (32), 166 (39), 164 (92), 149 (29). Ethyl ethers (1a, Et₂SO₄, K₂CO₃, Me₂CO, reflux, 56 hr; the product was separated by dry Si gel column chromatography into 1d (30 parts), eluted with C₆H₁₄-C₆H₆ 3:7 and 1c (1 part) eluted with $CHCl_3$ -MeOH, 1:1). 1c, mp 200 (C_6H_{14} -Et₂O, 1:1), v_{max}^{KBr} cm⁻¹: 3240, 1630, 1600. $\lambda_{\text{max}}^{\text{FtoH}}$ nm: 292, 367 (\$\epsilon\$9550, 5500);

 $\lambda_{\text{max}}^{\text{EtOH + NaOAc}}$ nm: 292, 370 (\$\epsilon\$9300, 5200); $\lambda_{\text{max}}^{\text{EtOH + NaOH}}$ nm: 296 $(ε4050); λ_{max}^{E1OH+A1Cl_3}$ nm: 290, 375 (ε9550, 5800). ¹H NMR $[(CD_3)_2CO, 60 \text{ MHz}]$: $\tau = -2.13$ (s, OH-5), 1.60 (s, OH-4'), 2.80-3.20 (m, H-2', 5', 6'), 4.20 (dd, J = 11, 5 Hz, H-2), 6.05 (q, $J = 7 \text{ Hz}, \text{OCH}_2-7$, 6.20 (s, OMe-3'), 6.87–7.10 (m, J = 11, 5 Hz, H-3), 7.90 (s, 2 Me), 8.59 (t, J = 7 Hz, Me). MS (m/e): 358, (88%) M⁺, 340 (100), 325 (56), 312 (25), 297 (32), 209 (49), 181 (41), 180 (11), 152 (16), 150 (21), 135 (23), 29 (30). **1d**, mp 110° (MeOH). $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3400, 1630, 1620, 1500. $\lambda_{\text{max}}^{\text{EtOH}}$ nm: 290, 365 (ε 13300, 9250); $\lambda_{\text{max}}^{\text{EiOH} + \text{NaOH}}$ nm: 295 (ϵ 13700). ¹H NMR (CCl₄, 60 MHz): $\tau - 1.93$ (s, OH-5), 2.90–3.32 (m, H-2',5',6'), 4.39 (dd, J = 11, 5 Hz, H-2), 6.00, 6.24 (2 q, J = 7 Hz, 2 OCH₂), 6.27 (s, OMe-3'), 6.90-7.34 (m, 2 H-3), 7.95 (s, 2 Me), 8.60, 8.75 (2 t, J=7 Hz, 2 Me). MS (m/e): 386 (100%) M⁺; 209 (9), 208 (33), 181 (10), 180 (15), 178 (94), 177 (8), 152 (22), 150 (26), 149 (14), 135 (16), 29 (16). Dibenzyl ether (1e), mp 130° (cyclohexane). $v_{\text{max}}^{\text{KBr}}$ (cm⁻¹): 3400, 1630, 1580, 1500. $\lambda_{\text{max}}^{\text{EiOH}}$ nm: 292, 365 (ε 10950, 2300); λΕΙΟΗ+ NaOH nm: 250 inf., 296, 392 (ε13260, 13260, 5860); $\lambda_{\text{max}}^{\text{EIOH+AICL}}$ nm: 293, 367 (\$\epsilon\$9950, 2300). ¹H NMR (CDCl₃) 60 MHz) τ : -2.00 (s, OH-5), 2.59, 2.65 (2 s, 2 Ph), 2.76-3.13 (m, H-2',5',6'), 4.24 (dd, J = 10, 7 Hz, H-2), 4.93, 5.15 (2 s, 2 OCH₂), 6.20 (s, OMe), 6.90-7.28 (m, J = 10, 7 Hz, H-3), 7.90 (s, 2 Me). MS (m/e): 510 (92%) M⁺, 492 (10), 420 (16), 402 (36), 312 (20), 271 (10), 240 (10), 181 (30), 180 (19), 152 (9), 150 (19), 149 (20), 92 (53), 91 (100). Diacetate (1f) (1a, Ac₂O, C₅H₅N, room temp.), mp 98–100°. $v_{\text{max}}^{\text{KBr}}$ cm⁻¹: 3440, 1760, 1630, 1600, 1500. $\lambda_{\text{max}}^{\text{EtOH}}$ (nm): 282, 367 (ϵ 12600, 5600); $\lambda_{\text{max}}^{\text{EtOH}+\text{AICL}_3}$ nm (after 15 min): 288, 309, 380 (ϵ 10550, 8300, 4350). ¹H NMR (CDCl₃, 60 MHz): τ -2.03(s, OH-5); 2.84-3.00 (m, H-3',5',6'), 4.55 (dd, J = 11, 5 Hz, H-2), 6.17 (s, OMe-4'), 6.95-7.25 (m, J = 11, 5 Hz, H-3), 7.64 (s, OAc-7), 7.74 (s, OAc-2'), 8.00, 8.05 (2s, 2 Me). MS (m/e): 414 (50%) M⁺, 372 (18), 354 (100), 312 (81), 181 (35), 180 (15), 152 (17), 150 (17), 135 (12), 43 (39). Triacetate (1g) (1a, Ac₂O, C₅H₅N, steam bath), mp 176–178° (cyclohexane). $v_{\text{max}}^{\text{KBr}} \text{ cm}^{-1}$: 1760, 1685, 1600, 1500. $\lambda_{\text{max}}^{\text{EiOH}}$ nm: 263, 336 (\$\epsilon\$10700, 5250). ¹H NMR (CDCl₃, 270 MHz): τ 2.85 (d, J = 3 Hz, H-2'), 2.95 (d, J = 8 Hz, H-5'), 3.09 (dd, J = 8, 3 Hz, H-6'), 4.65 (dd, J = 13, 3 Hz, H-2), 6.17 (s, OMe-)4'), 7.02 (dd, J = 15, 13 Hz, H-3 ax), 7.27 (dd, J = 15, 3 Hz, H-3 eq), 7.59, 7.64, 7.74 (3 s, 3 OAc), 7.97, 8.05 (2 s, 2 Me).

(2R)-5,7,4'-Trihydroxy-8-methylflavanone (2a), mp 195–200° (M Found: 286.0847; $C_{16}H_{14}O_5$. Requires: 286.0841), $v_{max}^{KBr}cm^{-1}$: 3500, 3400–3050, 1635, 1610. λ_{max} nm: 300, 340 (ε 9600, 2600); $\lambda_{\text{max}}^{\text{EtOH + NaOAc}}$ nm: 232, 257 inf., 287 inf., 337 (ϵ 9300, 2850, 2400, 12700); $\lambda_{\text{max}}^{\text{EtOH+NaOH}}$ nm: 230, 275, 335 (ϵ 11000, 11850, 14300); $\lambda_{\text{max}}^{\text{EtOH}+\text{AICL}_3}$ nm: 315, 355 (\$\epsilon\$9900, 1000). ¹H NMR ((CD₃)₂CO, 60 MHz) comparison of 2a/2b [7]: $\tau - 2.38/-0.21$ (s, OH-5), 2.66/2.72, 3.18/3.21 (AA'BB'-system, J = ca 9 Hz, H-2', H-6' and H-3', H-5'), 4.01/4.04 (s, H-6/H-8), 4.59/4.68 (dd, J=12, 4 Hz, H-6/H-8), 4.59/4.68 (dd, J=12, 4 Hz, H-6/H-8) 2), 6.35–7.45 (m, 2 H-3), 8.06/8.04 (s, Me-8/Me-6). MS (m/e): 286 (100 %) M⁺, 285 (32), 193 (14), 167 (67), 166 (40), 138 (47), 120 (25), 119 (8), 110 (10). Dimethyl ether (2c), mp 103-106 (2d, mp [7, 8] 147–148° ν_{max}^{KBr} cm $^{-1}$: 3425, 1640, 1615. λ_{max}^{EtOH} nm: 298, 344 (ε 8800, 1900); $\lambda_{max}^{EtOH+NaOAe}$ nm: 229, 295, 350 (ε 18800, 8800, 2200); $\lambda_{max}^{EtOH+NaOH}$ nm: 230, 250 inf., 295, 370 (ϵ 8500, 3800, 4700, 3800); λ^{IIIOH + AICl₃} nm: 310, 365 (ε 9100, 3140). ¹H NMR (CDCl₃, 60 MHz): $\tau - 2.03$ (s, OH-5), 2.60, 3.05 (AA'BB'-system, J = ca 9 Hz, 3.90 (s, H-6), 6.14 (s, 2 OMe), 8.00 (s, Me-8). MS (*m/e*): 314 (92%) M⁺, 313 (27), 207 (14), 181 (16), 180 (100), 152 (70), 134 (93), 124 (10), 119 (23).

(2S, 3S)-3,7,4'-Trihydroxy-5-methoxy-6-methylflavanone (3a), mp 234-236°. (M Found: 316.0958; $C_{17}H_{16}O_6$. Requires: 316.0947.) $v_{max}^{\rm KB}$ cm $^{-1}$: 3360, 3280, 1675, 1600. $\lambda_{max}^{\rm MeOH+NaOH}$ nm: 290, 340 (\$\varepsilon 800, 6300); $\lambda_{max}^{\rm MeOH+AlCl.}$ nm: 335 (\$\varepsilon 1250). $\lambda_{max}^{\rm MeOH+NaOH}$ nm: 335 (\$\varepsilon 14200); $\lambda_{max}^{\rm MeOH+AlCl.}$ nm: 320 (\$\varepsilon 13250). ^{1}H NMR (CD₃)₂SO, 60 MHz: τ 2.68, 3.24 (AA'BB'-system, J = ca 9 Hz, H-2', H-6' and H-3', H-5'), 3.83 (s, H-8), 5.07 (d, J = 10 Hz, H-2), 5.78 (d, J = 10 Hz, H-3), 6.27 (s, OMe-5), 8.18 (s, Me-6). MS (m/e): 316 (5%) M $^+$; 287 (17), 181 (93), 180 (100), 165 (8), 152 (20), 151 (15), 137 (25), 136 (23), 122 (99), 107 (28). Triacetate (3b), mp 78-80' (C_6H_{14}). $v_{max}^{\rm KBr}$ cm $^{-1}$: 1760, 1700, 1600, 1575, 1500. $\lambda_{max}^{\rm EiOH}$ nm: 280, 337 (\$\varepsilon 1600, 9300). 1H NMR (CDCl₃, 60 MHz): τ 2.50, 2.90 (AA'BB'-system, J = ca 9 Hz, H-2', H-6' and H-3', H-3', 6.12 (s, OMe-5), 7.70 (s, OAc-7, OAc-4'), 7.98 (s, OAc-3), 8.08 (s, Me-6). MS (m/e): 442 (24%) M $^+$; 223 (27), 222 (94), 181 (73), 180 (100), 178 (26), 152 (8), 136 (61), 107 (38).

2,2'-Dihydroxy-4,4',6,6'-tetramethoxy-3,3'-dimethylbenzophenone (**4a**), mp 180–183° (EtOH). (M Found: 362.1353; $C_{19}H_{22}O_7$. Requires: 362.1366.) v_{max}^{KBR} cm⁻¹: 3350, 3310, 1616, 1590, 1500. λ_{max}^{LIOH} nm: 243 inf., 270 (\$\varepsilon\$ 23 500, 9400); $\lambda_{max}^{EIOH+NaOH}$ nm: 246 inf., 280 (\$\varepsilon\$ 20 250, 10 850); $\lambda_{max}^{EIOH+AICI_3}$ nm: 237 inf., 270 (\$\varepsilon\$ 31 150, 14 100). ¹H NMR (CDCl₃, 60 MHz): \$\tau\$ 2.10 (s, 2 OH-2), 3.90 (s, 2 H-5), 6.00 (s, 2 Me-4), 6.20 (s, 2 OMe-6), 7.98 (s, 2 Me-3). MS (m/e): 362 (10%) M⁺, 196 (10), 195 (100), 194 (63), 168 (13), 167 (9). Diacetate (**4b**). ¹H NMR (CDCl₃, 60 MHz): \$\tau\$ 3.58 (s, H-5), 3.65 (s, H-5'), 6.20 (s, 4 OMe), 7.72, 7.82 (2s, 2 OAc), 8.16, 8.17 (2s, 2 Me).

Acknowledgement—This work was supported by a grant from Financiadora de Estudos e Projetos (FINEP).

REFERENCES

- Corrêa, D. de B., Birchal, E., Aguilar, J. E. V. and Gottlieb, O. R. (1975) Phytochemistry 14, 1138.
- Lopes, J. L. C., Lopes, J. N. C. and Leitão F⁰., H. F. (1979) *Phytochemistry* 18, 362.
- Paula, J. E. de (1967) Bol. Mus. Pa. Emilio Goeldi, ser. Bot., 28, 1.
- 4. Ducke, A. (1915) Arch. Jard. Bot. Rio de Janeiro 1, 48.
- 5. Gaffield, W. and Waiss Jr., A. C. (1968) Chem. Comm. 29.
- Markham, K. R. and Mabry, T. J. (1975) in *The Flavonoids* (Harborne, J. B., Mabry, T. J. and Mabry, H., eds.), pp. 45-77. Chapman & Hall, London.
- 7. Barton, G. M. (1967) Can. J. Chem. 45, 1020.
- 8. Barton, G. M. (1972) Phytochemistry 11, 426.
- Ogiso, A., Sate, A., Kashida, I. and Kuwano, H. (1974) Chem. Pharm. Bull. 22, 135.
- Herz, W., Gibaja, S., Bhat, S. V. and Srinivasan, A. (1972) Phytochemistry 11, 2859.
- 11. Lima, O. A. and Polonsky, J. (1973) Phytochemistry 12, 913.
- 12. Farid, S. (1968) Tetrahedron 24, 2121.